Aptamer!2025年第二期!适配体领域一周研究进展

点击蓝字 关注我们


研究进展


20250106-20250112 适配体领域一周研究进展。
一周进展,适配体领域的“老三样”和“新三样”。本周整个领域的亮点很多。
再说“新三样”:递送、成像和筛选。其实这也是适配体的常规方向,只是本周这几个方面的确有些不错的工作,值得说说。有RNA适配体用于成像的(文献2和6),以及用于glycoRNA空间成像的(文献14),PNA-RNA连接,提升亲和力特异性(文献49),还有利用适配体检测细胞内ATP波动(文献10)
文献35比较了Somascan和Olink的平台,结果显示Somascan平行性更好,靶标发现方面各有千秋,Somascan 的CV更优。这与之前的头对头比较结果类似。一句话说,就是Somascan与Olink各有千秋。
筛选和机理方面:文献43报道了一种体内进化平台,值得推荐。修饰筛选(文献8)和计算筛选(文献50)。
特别值得注意的是,本周有三篇文章研究金属离子与适配体折叠的问题(文献18、39、40),这为理解适配体结构与功能的关系积累了重要数据。
2025年的第二周,这个领域取得了一系列重要进展,值得欣慰。期待2025年,适配体能走向辉煌。如果你对哪些文章感兴趣,欢迎告诉我,小编优先为大家解读。
生物传感与检测
适配体的其它应用
药物递送与疾病治疗
适配体筛选技术及机制研究
综述及其它
参考文献
1 Agar, M., Laabei, M., Leese, H. S. & Estrela, P. Aptamer-molecularly imprinted polymer sensors for the detection of bacteria in water. Biosens Bioelectron 272, 117136, doi:10.1016/j.bios.2025.117136 (2025).
2 Bereiter, R. et al. Engineering covalent small molecule-RNA complexes in living cells. Nat Chem Biol, doi:10.1038/s41589-024-01801-3 (2025).
3 Cardle, II et al. DNA Aptamer-Polymer Conjugates for Selective Targeting of Integrin alpha4beta1(+) T-Lineage Cancers. ACS Appl Mater Interfaces, doi:10.1021/acsami.4c17788 (2025).
4 Chen, X., Lin, T., Su, J., Hou, L. & Zhao, S. Boric acid functionalized Cu2-xSe nanozyme for the immunomagnetic bead-based colorimetric assay of Escherichia coli O157:H7 coupled with smartphone. Microchemical Journal 209, 112713, doi:https://doi.org/10.1016/j.microc.2025.112713 (2025).
5 Chen, Y. et al. Cell-free biosensing array via Avi-tag oriented immobilization for allergen-specific IgE detection. Sensors and Actuators B: Chemical 427, 137185, doi:https://doi.org/10.1016/j.snb.2024.137185 (2025).
6 Chen, Z. et al. Near-infrared fluorogenic RNA for in vivo imaging and sensing. Nature Communications 16, 518, doi:10.1038/s41467-024-55093-1 (2025).
7 Chung, Y. D., Tsai, Y. C., Wang, C. H. & Lee, G. B. Aptamer selection via versatile microfluidic platforms and their diverse applications. Lab Chip, doi:10.1039/d4lc00859f (2025).
8 Dantsu, Y., Zhang, Y. & Zhang, W. Selection of a Fluorinated Aptamer Targeting the Viral RNA Frameshift Element with Different Chiralities. Biochemistry, doi:10.1021/acs.biochem.4c00606 (2025).
9 Elie, A. et al. Detection of Mercury Ions at ng/L Scale by Surface Plasmon Resonance (SPR) on DNA Aptamer Biochips. The Journal of Physical Chemistry C, doi:10.1021/acs.jpcc.4c04764 (2025).
10 Feng, X., Yi, D., Li, L. & Li, M. Exogenously and Endogenously Sequential Regulation of DNA Nanodevices Enables Organelle-Specific Signal Amplification in Subcellular ATP Profiling. Angew Chem Int Ed Engl, e202422651, doi:10.1002/anie.202422651 (2025).
11 Feng, X.-Q. et al. Construction of a self-assembled duplexed aptasensor for the simultaneous detection of haemoglobin and glycated haemoglobin. Sensors & Diagnostics (2025).
12 Feng, Y. et al. DNA Self-Assembly Generated by Aptamer-Triggered Rolling Circle Amplification Cascades for Profiling Colorectal Cancer-Derived Small Extracellular Vesicles. ACS Nano, doi:10.1021/acsnano.4c12286 (2025).
13 Gu, X. et al. Machine learning-assisted washing-free detection of extracellular vesicles by target recycling amplification based fluorescent aptasensor for accurate diagnosis of gastric cancer. Talanta, 127506, doi:https://doi.org/10.1016/j.talanta.2024.127506 (2025).
14 Guo, W. et al. Sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay for spatial imaging of glycoRNAs in single cells. Nat Protoc, doi:10.1038/s41596-024-01103-x (2025).
15 Hsu, Y. W. et al. The application of aptamers in the repair of bone, nerve, and vascular tissues. J Mater Chem B, doi:10.1039/d4tb02180k (2025).
16 Jayan, H. et al. Microfluidic-SERS platform with in-situ nanoparticle synthesis for rapid E. coli detection in food. Food Chem 471, 142800, doi:10.1016/j.foodchem.2025.142800 (2025).
17 Kalsoom, I. et al. Structure Switching Aptamers Enhance Sensitivity and Specificity of Photonic Crystal-Based Sensors for RSV-G Protein Detection. Biosensors and Bioelectronics, 117091, doi:https://doi.org/10.1016/j.bios.2024.117091 (2025).
18 Kaur, J. et al. Influence of Magnesium Ions and Crowding Agents on Structure and Stability of RNA Aptamers. Biochemistry, doi:10.1021/acs.biochem.4c00468 (2025).
19 Kersten, C., Zahler, S. & Schneider, S. Design and characterization of a micro RNA-200c detecting Broccoli fluorescent light-up aptamer. Chembiochem, e202400772, doi:10.1002/cbic.202400772 (2025).
20 Khongwichit, S. et al. Reduced Uptake of Oxidized Low-Density Lipoprotein by Macrophages Using Multiple Aptamer Combinations. ACS Appl Bio Mater, doi:10.1021/acsabm.4c01432 (2025).
21 Li, B. et al. Visual detection of Staphylococcus aureus based on magnetic bead target enrichment and rolling circle amplification. Journal of Analytical Science and Technology 16, 1, doi:10.1186/s40543-024-00473-x (2025).
22 Li, C. et al. Folding an RCA Scaffold into an Intelligent Coiled Nanosnake for Precise/Synergistic RNAi-/Chemotherapy of Cancer. Anal Chem, doi:10.1021/acs.analchem.4c03437 (2025).
23 Li, F. et al. Hairpin-aptamer conformational switching assisted dual-signal ratiometric detection of aflatoxin B1 based on liquid exfoliated graphene/Ti3C2 MXene nanocomposite. LWT 216, 117340, doi:https://doi.org/10.1016/j.lwt.2025.117340 (2025).
24 Li, R., Qian, G., Shen, H. & Yu, S. Self-cascade MOF@MOF nanozyme for ultrasensitive and low-background detection of multidrug-resistant bacteria. Microchemical Journal 209, 112695, doi:https://doi.org/10.1016/j.microc.2025.112695 (2025).
25 Liang, B. et al. A simply synthesized, silver ions-doped porous gold microparticles-based SERS aptamer sensor for ultrasensitive and broad-range quantitative detection of IL-6. Anal Chim Acta 1336, 343504, doi:10.1016/j.aca.2024.343504 (2025).
26 Liu, S. et al. Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin. Anal Chem, doi:10.1021/acs.analchem.4c05669 (2025).
27 Liu, Y. et al. Highly sensitive and catalytic electrochemical aptamer-based biosensor for β-lactoglobulin via coupling redox recycling background minimization with DNAzyme amplification. Analytica Chimica Acta, 343626, doi:https://doi.org/10.1016/j.aca.2025.343626 (2025).
28 Liu, Y., Pandey, R., McCarthy, M. J. & Raymond, O. Electrochemical Aptamer-Based Biosensors for Cocaine Detection in Human Saliva: Exploring Matrix Interference. Anal Chem, doi:10.1021/acs.analchem.4c03423 (2025).
29 Millozzi, F. et al. Aptamer-conjugated gold nanoparticles enable oligonucleotide delivery into muscle stem cells to promote regeneration of dystrophic muscles. Nat Commun 16, 577, doi:10.1038/s41467-024-55223-9 (2025).
30 Moradi, Z. et al. Designing Multivalent Aptamers: Recent Advancements in Diagnostic and Therapeutic Approaches for Cancer Treatment. Journal of Drug Delivery Science and Technology, 106614, doi:https://doi.org/10.1016/j.jddst.2025.106614 (2025).
31 Onaş, A. M. et al. Facile preparation of bifunctional monolayers through diazonium grafting and “click” postfunctionalization: A first step towards efficient aptasensing interfaces. Bioelectrochemistry, 108904, doi:https://doi.org/10.1016/j.bioelechem.2025.108904 (2025).
32 Ourabi, M., Massey, R. S., Prakash, R. & Lessard, B. H. Adapting single-walled carbon nanotube-based thin-film transistors to flexible substrates with electrolyte-gated configurations using a versatile tri-layer polymer dielectric. Nanoscale Adv, doi:10.1039/d4na01007h (2024).
33 Pan, W. et al. Targeted Degradation of HCV Polymerase by GalNAc-Conjugated ApTACs for Pan-Genotypic Antiviral Therapy with High Resistance Barriers. J Med Chem, doi:10.1021/acs.jmedchem.4c02068 (2025).
34 Pu, X. et al. A Y-Shaped Peptide-Based Antifouling Electrochemical Aptasensor for Sensitive Aflatoxin B1 Detection in Food. Journal of Agricultural and Food Chemistry, doi:10.1021/acs.jafc.4c10516 (2025).
35 Puerta, R. et al. Head-to-Head Comparison of Aptamer- and Antibody-Based Proteomic Platforms in Human Cerebrospinal Fluid Samples from a Real-World Memory Clinic Cohort. Int J Mol Sci 26, doi:10.3390/ijms26010286 (2024).
36 Ren, Y. et al. Magnetic graphene-enhanced exonuclease III assisted amplification strategy driven carbon nanozyme for tri-mode detection of Escherichia coli O157:H7. Food Chem 471, 142776, doi:10.1016/j.foodchem.2025.142776 (2025).
37 Scida, K., Ornelas-Gatdula, E., DePasquale, M., Carr, G. V. & Arroyo-Currás, N. Therapeutic Drug Distribution across the Mouse Brain Is Heterogeneous as Revealed by In Vivo, Spatially Resolved Aptamer-Based Sensing. ACS Pharmacology & Translational Science, doi:10.1021/acsptsci.4c00579 (2025).
38 Shi, M. et al. A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy. Adv Healthc Mater, e2404159, doi:10.1002/adhm.202404159 (2025).
39 Shin, J. Y. et al. Deciphering ligand and metal ion dependent intricate folding landscape of Vc2 c-di-GMP riboswitch aptamer. Nucleic Acids Res 53, doi:10.1093/nar/gkae1296 (2025).
40 Stephen, C. N., Palmer, D. E. & Mishanina, T. V. Structurally distinct manganese-sensing riboswitch aptamers regulate diverse expression platform architectures. bioRxiv, doi:10.1101/2024.12.14.628514 (2024).
41 Strelnikova, P. A. et al. Blood plasma proteomic markers of Alzheimer's disease, current status and application prospects. Expert Rev Proteomics, doi:10.1080/14789450.2025.2450804 (2025).
42 Su, X., Chen, J., Wu, S., Qiu, Y. & Pan, Y. A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination. Sensors (Basel) 24, doi:10.3390/s24247878 (2024).
43 Su-Tobon, Q. et al. CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers. Nat Commun 16, 595, doi:10.1038/s41467-025-55957-0 (2025).
44 Tan, Y. et al. Transcriptomic analysis of the inhibition mechanisms against Pseudomonas plecoglossicida by antibacterial aptamer B4. Front Vet Sci 11, 1511234, doi:10.3389/fvets.2024.1511234 (2024).
45 Tsvetkov, V. et al. Unveiling the unusual i-motif-derived architecture of a DNA aptamer exhibiting high affinity for influenza A virus. Nucleic Acids Res 53, doi:10.1093/nar/gkae1282 (2025).
46 Virgilio, A. et al. Probing the Effects of Chemical Modifications on Anticoagulant and Antiproliferative Activity of Thrombin Binding Aptamer. Int J Mol Sci 26, doi:10.3390/ijms26010134 (2024).
47 Wang, J. et al. Detection of zearalenone by electrochemical aptasensor based on enzyme-assisted target recycling and DNAzyme release strategy. Talanta 286, 127533, doi:10.1016/j.talanta.2025.127533 (2025).
48 Weng, X., Wang, G., Zhang, H. & Jiang, H. MXene–AuNCs-based electrochemical aptasensor for ultrasensitive detection of neuron-specific enolase in early lung cancer diagnosis. Microchemical Journal, 112732, doi:https://doi.org/10.1016/j.microc.2025.112732 (2025).
49 Wierzba, A. J., Richards, E. M., Lennon, S. R., Batey, R. T. & Palmer, A. E. Unveiling the promise of peptide nucleic acids as functional linkers for an RNA imaging platform. RSC Chem Biol, doi:10.1039/d4cb00274a (2024).
50 Woldekidan, H. B. & Woldesemayat, A. A. In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein. Methods Mol Biol, doi:10.1007/7651_2024_596 (2025).
51 Xu, J. et al. A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm. Carbohydr Polym 351, 123120, doi:10.1016/j.carbpol.2024.123120 (2025).
52 Yamada, T. et al. Development of a mertansine-specific DNA aptamer and novel high-throughput sandwich enzyme-linked oligonucleotide assay for quantification and characterization of trastuzumab emtansine. Biosens Bioelectron 272, 117108, doi:10.1016/j.bios.2024.117108 (2024).
53 Yang, H., Wang, H., Wang, P. & Feng, Q. Energy-Transfer-Based Dual-Mode PEC-ECL Biosensor for Acetamiprid Analysis Sensitized by Two-Step DNA Circuit Amplification. ACS Appl Mater Interfaces, doi:10.1021/acsami.4c18752 (2025).
54 Yang, R., Zhao, L., Fang, M., Kong, W. & Luan, Y. CRISPR-Cas12a-driven aptasensor for sensitive detection of alternariol by using a personal glucose meter. Talanta 286, 127496, doi:10.1016/j.talanta.2024.127496 (2025).
55 Zhang, D. et al. Integrating magnetic-plasmonic and membrane-like nanotags for the sensitive and reliable detection of aflatoxin B1 in foodstuffs. Food Control, 111144, doi:https://doi.org/10.1016/j.foodcont.2025.111144 (2025).
56 Zhou, X. et al. Lighting Up Dual-Aptamer-Based DNA Logic-Gated Series Lamp Probes with Specific Membrane Proteins for Sensitive and Accurate Cancer Cell Identification. Anal Chem, doi:10.1021/acs.analchem.4c05505 (2025).
57 Zhu, Z. et al. Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin. ACS Nano, doi:10.1021/acsnano.4c12447 (2025).
58 Zlinska, V. et al. Specific inhibition of fibroblast growth factor receptor 1 signaling by a DNA aptamer. Mol Ther Nucleic Acids 36, 102405, doi:10.1016/j.omtn.2024.102405 (2025).

END

Aptamy 10年专注核酸适配体筛选!
提供适配体筛选、亲和力检测等技术服务,合作咨询:

微信号丨aptamerHF
电话丨13965674386
官网丨www.aptamy.com