• 回到顶部
  • 13965674386
  • QQ客服
  • 微信二维码

适配体领域研究进展——2024年12月第四周

首页    文献分享    适配体领域研究进展——2024年12月第四周

点击蓝字 关注我们

研究进展

20241223-20241229 适配体领域一周研究进展

      本周有不少亮点工作。针对检测工作,有针对小分子(毒素、抗生素、药物等)、疾病标志物、病原菌、外泌体以及细胞相关的检测工作。筛选相关工作有4篇,算是比较多的了,包括一篇筛选出构象特异性的适配体(文献31),说明适配体在一定条件下,可以具备非常好的特异性。其它研究包括结构研究、调控应用,以及用作递送平台等。如果你对哪些工作感兴趣,可以在评论区留言告诉我们。

1

生物传感与检测


1.1 细菌/细胞检测

  1. 多功能细菌传感器:Dai, H. 等基于特定结构用适配体修饰材料作探针构建多功能 SERS 生物传感器,可识别、检测和光热杀两种细菌,灵敏度高、细胞毒性低,保障食品安全。文献 4

  2. 无乳链球菌研究:Gan, Z. 等研究无乳链球菌菌株 TP540K 特性及适配体开发潜力,该菌株有特定形态生化特性,可用于后续适配体研究。文献 9

  3. 食源性病原体检测:Xu, X. 等创建多色检测方法鉴定金黄色葡萄球菌和大肠杆菌 O157:H7,利用纳米酶活性和金纳米棒蚀刻作用,灵敏度高、检测限低、速度快。文献 47

  4. 大肠杆菌检测:Yousefniayejahr, Z. 等开发基于无标记阻抗的电化学生物传感器,用适配体检测大肠杆菌,检测限低、线性范围良好,已在真实样本测试。文献 53

  5. 前列腺癌CTC检测:Zhou,Y.,等开发新的 PMMA 三角柱纳米阵列衬底集成微流控芯片捕获和检测 PC3 细胞,捕获效率高,可为前列腺癌早期诊断提供依据。文献 56

  6. 金黄色葡萄球菌检测:Zhu, A. 等建立 RCA 辅助 SERS 策略检测金黄色葡萄球菌,利用适配体与互补链作用触发 RCA,检测限低,在真实样品中验证有效。文献 57

1.2 蛋白检测

  1. 肿瘤生物标志物检测平台:Huang, W. 等利用 Au@Cu2O 切换光电流极性构建光电化学生物传感平台测 CEA,灵敏度高、选择性好、线性范围宽,为肿瘤标志物测定提供方案。文献 14

  2. ANGPTL4 检测传感器:Li, D. 等设计可编程反应构建电化学适配体生物传感器检测血管生成素样蛋白 4(ANGPTL4),灵敏度高、检测限低,可用于人血清检测,在糖尿病视网膜病变诊断中有潜力。文献 20

  3. LDL 检测传感器:Li, G. 等构建新型碳基光可寻址电位适配传感器测低密度脂蛋白LDL,以特定材料作界面和光电转换元件,优化后与 LDL 浓度线性相关,性能良好。文献 21

  4. β - 乳球蛋白检测传感器:Li, M. 等利用异质结敏化量子点构建无标记光电化学适配传感器测牛奶中 β - 乳球蛋白,性能良好,为牛奶检测提供方法。文献 23

  5. 糖基化蛋白检测:Lv, Y. 等提出基于硼酸基共价有机框架构建传感器测糖基化 Abeta16 蛋白,宽检测范围、低检出限、高稳定性,为相关生物传感器开发提供新见解。文献 28

  6. 金黄色葡萄球菌蛋白 A 检测:Tataru, AM 等针对金黄色葡萄球菌蛋白 A 开发适配体传感器,设计竞争性配置,检测线性范围和检出限良好,已在真实样本测试。文献 42

1.3毒素及小分子检测

  1. 霉内酯研究:Akolgo, GA 等探究霉内酯特性与应用,回顾化学、生物合成及在布鲁里溃疡诊断治疗潜力,涉合成改进、诊断、生物学作用及类似物应用,助于相关疾病研究。文献 1

  2. 赭曲霉毒素 A检测传感器:Amini - Nogorani, E. 等利用 Zn - MOF 封装甲苯胺蓝改性电极构建适配传感器,检测咖啡样中赭曲霉毒素 A(OTA),灵敏度高、检测限低、线性范围宽,用于食品安全检测。文献 2

  3. 土霉素检测传感器:Guan, F. 等用 Cu - MOF 等修饰电极开发适配传感器测土霉素,稳定性好、线性范围宽、检测限低,食品样品检测回收率佳。文献 10

  4. 赭曲霉毒素 A检测新技术:Guo, Z. 等利用 DNAzyme 催化和金纳米棒蚀刻开发多色视觉传感器测赭曲霉毒素 A(OTA),灵敏度高、特异性强、检测限低,可拓展检测其他污染物。文献 11

  5. 中和细胞毒素适配体:Hiu, JJ 等发现中和细胞毒素毒性的 tRNA 模拟适配体 AptRNA6,结合特异性和亲和力高,有合成生物治疗药物潜力。文献 12

  6. 黄曲霉毒素 B1检测传感器:Hu,Z., 等将钴硫量子点封装、二茂铁改性适配体作淬灭剂构建开关型传感器测黄曲霉毒素 B1(AFB1),线性范围宽、检测限低,可用于玉米样品检测。文献 13

  7. 氟虫腈检测传感器:Jia, B. 等优化合成材料提高电导率构建适配传感器测氟虫腈,采用多种策略放大信号,检测范围宽、下限低。文献 15

  8. 17β-雌二醇检测传感器:Jin, XY 等开发磁性氧化石墨烯 / 适配体分离材料制荧光生物传感器测 17β-雌二醇(E2),灵敏度高、选择性强、稳定性好,检测限低,适用于环境水样检测。文献 17

  9. 西地那非检测试纸:Kavruk, M. 和 VC Ozalp 开发侧向层析试纸测西地那非非法存在,用适配体转化结构集成到试纸条,检测限低,简化测定并放大信号。文献 18

  10. 新型发光团测抗生素:Li, H. 等制备新型发光团 Ru - CdSe QD 引入系统构建传感器同时检测两种抗生素,利用钴单原子催化剂放大信号,开发新生物传感器。文献 22

  11. 双酚 A 检测传感器:Liu, Y. 和 X. Xu 基于金纳米颗粒等辅助扩增策略构建电化学适配传感器测双酚 A (BPA),适配体识别与信号放大结合,线性范围宽、检测限低,已用于多种样品检测。文献 27

  12. 玉米赤霉烯酮检测:Ma,X. 等开发基于比色和荧光技术的双信号适配体测定法测玉米赤霉烯酮 (ZEN),用 CdTe 量子点和 COF - Au 作信号源,操作简单、成本低、回收率良好。文献 29

  13. 黄体生成素检测传感器:Ming, Y. 等提出结合低背景催化氧化还原回收与 HCR 的适配体传感方法测黄体生成素(LH),灵敏度高、检测限低,可用于人血清检测,是监测生物标志物的强大平台。文献 32

  14. 辣椒素检测:Qin, M. 等开发基于结构引导适配体的双模式侧向层析测定法测地沟油中辣椒素,提高适配体亲和力,检测限低、线性范围宽,为食品安全检测提供新方向。文献 35

  15. 奎宁检测:Sun, X. 等设计基于双功能单体的传感器用近红外碳点测食品中奎宁,线性范围宽、检出限低,饮料样品回收率良好,检测奎宁潜力大。文献 40

  16. 河豚毒素检测:Tang, Y. 等基于适配体 / 抗体分子识别系统开发测定法测河豚毒素,可定性筛查和半定量检测,回收率和重现性良好。文献 41

  17. 赭曲霉毒素 A和 黄曲霉毒素 B1 同时检测:Wang, M. 等合成金纳米簇作参考信号建立传感器同时检测赭曲霉毒素 A (OTA) 和黄曲霉毒素 B1 (AFB1),适配体自组装,特异性和准确性良好,已用于实际样品检测。文献 43

  18. 妥布霉素检测:Wang, R. 等合成 Mn - CeO2 纳米酶构建双模适配体传感器测妥布霉素,利用适配体影响纳米酶活性实现超灵敏检测,检测限低、选择性好。文献 44

  19. 水杨酸检测:Wu, M. 等用 “无标记” 水杨酸适配体作宿主制作超分子探针测水杨酸,检测限低,开发图像处理程序增强肉眼辨别能力。文献 45

  20. 邻苯二甲酸酯检测:Yang, H. 等构建近红外光激活异质结构作信号发生器开发光电化学适配传感器测邻苯二甲酸酯,性能良好。文献 48

  21. 磺胺二甲氧嘧啶检测:Yang, Z. 等制备基于 AgNPs@MOF 的适配传感器,通过 SERS 检测磺胺二甲氧嘧啶,选择性和灵敏度良好,可用于实际样品检测。文献 51

  22. 卡那霉素检测:Ye, Z. 等提出光电化学扩展栅场效应晶体管传感器测卡那霉素,灵敏度高、检测限低,为 FET 传感器设计提供新结构。文献 52

  23. 四环素检测:Zhang, J. 等利用 MXene - Au NPs 复合材料结合信号探针开发电化学传感器测四环素,采用多种信号放大策略,检测范围宽、检测限低。文献 54

1.4 其他检测

  1. 卵巢癌诊断传感器综述:Foroozandeh, A. 等调查卵巢癌诊断纳米生物传感策略进展,分析多种技术及新兴技术,期望提高卵巢癌早期诊断准确性。文献 8

  2. 前列腺癌外泌体检测:Jia, H. 等基于仙人掌状阵列衬底的微流控芯片结合适配体标记探针测前列腺癌外泌体,线性响应好、检出限低,为前列腺癌早期诊断提供方案。文献 16

  3. 适配体组合综述:Kim, KB, 等综述适配体与金属纳米团簇整合用于分子检测,介绍策略、应用、案例及系统优劣势等。文献 19

  4. 乳腺癌 miRNA 检测:Liu, H. 等提出一锅等温测定法构建荧光生物传感器测乳腺癌 miRNA,检测限低、速度快,在乳腺癌生物标志物诊断中有潜力。文献 25

  5. 可再生FET传感器:Liu, J. 等构建适配体 - MXene 传感接口开发 FET 生物传感器,用适配体修饰薄膜作电导通道,可逆键使适配体可重复固定,检测性能良好。文献 26

  6. 多价适配体纳米平台:Ning, G. 等合成红碳点与适配体结合并滚环扩增构建多价适配体纳米平台,可区分正常和癌细胞,在肿瘤诊断联合治疗中有潜力。文献 34

  7. 农药残留检测:Serebrennikova, KV 等介绍基于天然材料等的 SERS 基材用于农药残留检测,考虑除草剂对光合作用影响及检测前景。文献 39

  8. 外泌体检测:Zhao, L. 等提出双模式外泌体检测平台,利用掺杂微球的特性,通过比色和荧光检测,检测限低,能区分癌细胞和正常细胞外泌体。文献 55

2

适配体技术与机制研究


适配体在疾病诊断中的应用

  1. 孕激素受体适配体:Navien, TN 等用计算机对接方法筛选针对孕激素受体 DNA 结合域的 DNA 适配体,可与雌激素和雄激素受体相互作用,有望用于乳腺癌诊断。文献 33

  2. 癌症诊断适配体:Chen, J. 等以 FAP 糖基化为靶点筛选适配体构建夹心传感器测 FAP,提高癌症血清样本检测选择性,为癌症诊断开辟新途径。文献 3

  3. 球形核酸改进:Du, L. 等将蛋白质吸附到磁性颗粒形成 pap - SNA 并设计核酸支架,十字形支架的 pap - SNA 减少蛋白质干扰,提高复杂基质中蛋白质检测灵敏度。文献 5

  4. 适配体设计计算:Fasogbon, IV, 等综述适配体设计计算方法,分析非 SELEX 方法进展、性能、应用、优劣势等,为适配体技术开发提供思路。文献 7

  5. 生物分子可视化:Ling, CCY 和 MJ Fullwood 开发 AptaFluorescence 方案用适配体可视化生物分子,信号清晰,能区分不同处理细胞,适用于多种生物学工作。文献 24

  6. 纳米凝胶印迹影响:Wu, X. 等应用 MD 模拟探索纳米凝胶印迹提高适配体对 Pb(2+)结合亲和力和选择性原因,印迹聚合物稳定适配体结构并增强选择性。文献 46

  7. 纳米酶与适配体综述:Yang, Y. 等综述纳米酶与适配体结合相关内容,讨论未来发展,期望激发相关领域研究人员设计更优质产品。文献 49

  8. RNA 结晶策略:Ren,Y. 等提出用 GU 对取代 Watson - Crick 对提高 RNA 晶体分辨率,成功测定多种 RNA 结构,为 RNA 结构测定提供方法。文献 36

  9. 神经元生物活性调节:Rolli, J. 等从分子库中选择并筛选能引发生物反应的适配体,验证其在多种神经元细胞中的结合,展示识别活性适配体流程。文献 38

3

药物递送与疾病治疗


  1. RNA 递送平台:Fan, J. 等探讨纳米载体介导的 RNA 递送平台,总结肝病 RNA 治疗及纳米级递送平台优缺点,为开发有效治疗递送平台提供参考。文献 6

  2. 多糖修饰脂质纳米颗粒:Ma,Y. 等综述多糖修饰脂质纳米颗粒制备和应用,其生物相容性好、靶向精准、毒性低,在临床治疗中有巨大潜力。文献 30

  3. 构象特异性 RNA 适配体:Machha, VR, 等选择 RNA 适配体区分正常与 2B 型 VWF,经多种实验证实适配体特异性,可用于相关疾病临床诊断。文献 31

  4. 转录光遗传调节:Renzl, C. 和 G. Mayer 将光感受器 PAL 和适配体 53 相互作用整合到 CRISPR/dCas9 系统,用于基因表达光控激活,描述其体外应用方案。文献 37

  5. 框架核酸 - 纳米抗体融合探针:Yang, Y. 等利用 DNA 纳米技术构建融合探针,进行多项分析和建模,可调节肿瘤部位探针积累,为成像探针设计提供信息。文献 50

参考文献

1Akolgo, G. A., Asiedu, K. B. & Amewu, R. K. Exploring Mycolactone-The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins (Basel) 16, doi:10.3390/toxins16120528 (2024).

2Amini-Nogorani, E., Zare, H. R., Jahangiri-Dehaghani, F. & Benvidi, A. Quantification of ochratoxin A in a coffee sample utilizing an electrochemical aptasensor fabricated through encapsulation of toluidine blue within a Zn-based metal-organic framework. Mikrochim Acta 192, 27, doi:10.1007/s00604-024-06863-7 (2024).

3Chen, J., Ma, P., Xu, J., Zang, M. & Li, W. Glycosylation-Targeting Aptamer for the Feasible Construction of a Dual Aptamer-Based Plasmonic Immunosandwich Assay in Cancer Diagnostics. Anal Chem, doi:10.1021/acs.analchem.4c03770 (2024).

4Dai, H. et al. A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus. Analytica Chimica Acta 1338, 343589, doi:https://doi.org/10.1016/j.aca.2024.343589 (2025).

5Du, L. et al. Preadsorbed Particles with Cross-Shaped DNA Scaffolds Enable Spherical Nucleic Acid to Directly Respond to Protein in Complex Matrices. Anal Chem, doi:10.1021/acs.analchem.4c05096 (2024).

6Fan, J. et al. Nanocarrier-Mediated RNA Delivery Platform as a Frontier Strategy for Hepatic Disease Treatment: Challenges and Opportunities. Adv Healthc Mater, e2402933, doi:10.1002/adhm.202402933 (2024).

7Fasogbon, I. V. et al. Recent Focus in Non-Selex-Computational Approach for De Novo Aptamer Design: A Mini Review. Anal Biochem, 115756, doi:10.1016/j.ab.2024.115756 (2024).

8Foroozandeh, A. et al. Recent advancements in nanobiosensors for diagnosis of ovarian cancer: Analytical approaches. TrAC Trends in Analytical Chemistry, 118119, doi:https://doi.org/10.1016/j.trac.2024.118119 (2024).

9Gan, Z. et al. Characterization of Streptococcus agalactiae Strain TP540K and Its Potential as a Target for DNA Aptamer Development in the Preliminary Stage of Whole-Cell Based SELEX. Journal of Environmental Microbiology and Toxicology 12, 31-37, doi:10.54987/jemat.v12i2.1010 (2024).

10Guan, F. et al. An electrochemical aptamer sensor based on AuNPs/ErGO/Cu-MOF nanocomposites for the detection of oxytetracycline in foodstuff. Microchemical Journal 208, 112579, doi:https://doi.org/10.1016/j.microc.2024.112579 (2025).

11Guo, Z. et al. Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching. Mikrochim Acta 192, 33, doi:10.1007/s00604-024-06883-3 (2024).

12Hiu, J. J., Tan, H. S. & Yap, M. K. K. The neutralisation and inhibitory effects of new tRNA-mimetic aptamer against cytotoxin-induced cytotoxicity in human skin keratinocytes. Biochimie, doi:https://doi.org/10.1016/j.biochi.2024.12.011 (2024).

13Hu, Z. et al. Switch-Type Electrochemiluminescence Aptasensor for AFB1 Detection Based on CoS Quantum Dots Encapsulated in Co-LDH and a Ferrocene Quencher. Anal Chem, doi:10.1021/acs.analchem.4c05821 (2024).

14Huang, W., Liu, F., Geng, L., Zhao, S. & Ye, F. Photoelectrochemical biosensing platform based on switch of photocurrent polarity of CdS/Ni-CAT nanorod arrays by Au@Cu2O for highly selective and sensitive CEA detection. Talanta 286, 127489, doi:https://doi.org/10.1016/j.talanta.2024.127489 (2025).

15Jia, B. et al. An aptasensor consisting of the integrated MOF-derived Zn-MOF-on- Co-MOF coupled with AuNPs nanocomposites and aptamer for ultrasensitive assay of fipronil. Food Chemistry, 142662, doi:https://doi.org/10.1016/j.foodchem.2024.142662 (2024).

16Jia, H. et al. Integrated SERS-Microfluidic Sensor Based on Nano-Micro Hierarchical Cactus-like Array Substrates for the Early Diagnosis of Prostate Cancer. Biosensors (Basel) 14, doi:10.3390/bios14120579 (2024).

17Jin, X. Y., Chen, L. Y., Liu, Y. N., Xie, W. J. & Peng, H. Y. [Construction of a 17beta-estradiol sensor based on a magnetic graphene oxide/aptamer separating material]. Se Pu 43, 87-95, doi:10.3724/SP.J.1123.2024.06009 (2025).

18Kavruk, M. & Ozalp, V. C. Paper-Based Aptasensor Assay for Detection of Food Adulterant Sildenafil. Biosensors (Basel) 14, doi:10.3390/bios14120620 (2024).

19Kim, K. B., Kim, S. H. & Yoo, S. M. Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems. Biosensors (Basel) 14, doi:10.3390/bios14120625 (2024).

20Li, D., Chen, Q., Li, Y., Yuan, R. & Xiang, Y. Programming Catalytic Nucleic Acid Amplification Cascade for Highly Sensitive Electrochemical Aptamer-based Angiopoietin Like Protein 4 Biosensor. Sensors and Actuators B: Chemical, 137207, doi:https://doi.org/10.1016/j.snb.2024.137207 (2024).

21Li, G. et al. Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection. Mikrochim Acta 192, 35, doi:10.1007/s00604-024-06909-w (2024).

22Li, H., Cai, Q., Bai, M. & Jie, G. Novel Dual-Potential Color-Resolved Luminophore Ru(bpy)(3)(2+)-Doped CdSe QDs for Bipolar Electrode Electrochemiluminescence Biosensing. Anal Chem, doi:10.1021/acs.analchem.4c05678 (2024).

23Li, M. et al. A label-free photoelectrochemical aptasensor utilizing Ag2S quantum dot-sensitized In2O3/BiOBr heterojunction for β-lactoglobulin detection in milk samples. Microchemical Journal 208, 112564, doi:https://doi.org/10.1016/j.microc.2024.112564 (2025).

24Ling, C. C. Y. & Fullwood, M. J. AptaFluorescence: An aptamer-based fluorescent imaging protocol for biomolecule visualization. PLoS One 19, e0316359, doi:10.1371/journal.pone.0316359 (2024).

25Liu, H. et al. Ligation-Recognition Triggered RPA-Cas12a cis-cleavage Fluorogenic RNA Aptamer for One-pot and Label-free Detection of MicroRNA in Breast Cancer. Biosensors and Bioelectronics, 117106, doi:https://doi.org/10.1016/j.bios.2024.117106 (2024).

26Liu, J., Tan, F., Cao, T., Yu, R. & Wang, Y. Tunable aptamer-MXene sensing interface for label-free and real-time detection of toxic pollutants in water samples. Biosens Bioelectron 271, 117096, doi:10.1016/j.bios.2024.117096 (2024).

27Liu, Y. & Xu, X. An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I. Mikrochim Acta 192, 25, doi:10.1007/s00604-024-06882-4 (2024).

28Lv, Y. et al. In situ formation of boronic acid-based covalent organic frameworks for specific and ultra-sensitive electrochemical assay of glycosylated amyloid-beta proteins. Talanta 285, 127435, doi:10.1016/j.talanta.2024.127435 (2024).

29Ma, X., Hui, M., Yuan, J., Wang, Z. & Ma, X. Construction of colorimetric-fluorescent dual-signal aptamer-based assay using COF-Au nanozyme and magnetic nanoparticle-based CdTe quantum dots for sensitive zearalenone determination. Mikrochim Acta 192, 38, doi:10.1007/s00604-024-06914-z (2024).

30Ma, Y., Liu, H., Wang, X., Sun, S. & Guo, H. [Research progress in polysaccharide-modified lipid nanoparticles for drug delivery]. Sheng Wu Gong Cheng Xue Bao 40, 4339-4350, doi:10.13345/j.cjb.240188 (2024).

31Machha, V. R. et al. Conformation-specific RNA aptamers for phenotypic distinction between normal von Willebrand factor and type 2B von Willebrand disease. NAR Mol Med 1, ugae021, doi:10.1093/narmme/ugae021 (2024).

32Ming, Y. et al. Low background catalytic redox recycling coupled with hybridization chain reaction amplification for highly sensitive electrochemical aptamer luteinizing hormone assay. Bioelectrochemistry 163, 108888, doi:https://doi.org/10.1016/j.bioelechem.2024.108888 (2025).

33Navien, T. N., Thevendran, R. & Citartan, M. In Silico Selection against Progesterone Receptor DNA-Binding Domain and other members of steroid hormone receptors. Anal Biochem, 115752, doi:10.1016/j.ab.2024.115752 (2024).

34Ning, G. et al. Discrimination of normal/cancer cells in bioimaging through a rolling circle amplification-enhanced red carbon dots-embedded multivalent aptamers nanoplatform. Talanta 285, 127436, doi:10.1016/j.talanta.2024.127436 (2024).

35Qin, M. et al. Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils. Biosens Bioelectron 271, 117100, doi:10.1016/j.bios.2024.117100 (2024).

36Ren, Y. et al. A general strategy for engineering GU base pairs to facilitate RNA crystallization. Nucleic Acids Res, doi:10.1093/nar/gkae1218 (2024).

37Renzl, C. & Mayer, G. Optoribogenetic Modulation of Transcription. Methods Mol Biol 2840, 37-44, doi:10.1007/978-1-0716-4047-0_3 (2025).

38Rolli, J. et al. DNA aptamers that modulate biological activity of model neurons. Mol Ther Nucleic Acids 35, 102392, doi:10.1016/j.omtn.2024.102392 (2024).

39Serebrennikova, K. V., Komova, N. S., Zherdev, A. V. & Dzantiev, B. B. SERS Sensors with Bio-Derived Substrates Under the Way to Agricultural Monitoring of Pesticide Residues. Biosensors (Basel) 14, doi:10.3390/bios14120573 (2024).

40Sun, X. et al. A dual-functional monomer-based molecularly imprinted fluorescent aptasensor employing near-infrared carbon dots for selective detection of quinine in food. Food Chem 469, 142317, doi:10.1016/j.foodchem.2024.142317 (2024).

41Tang, Y. et al. Signal-on lateral flow immunoassays for rapid detection of tetrodotoxin in pufferfish. J Hazard Mater 486, 136973, doi:10.1016/j.jhazmat.2024.136973 (2024).

42Tataru, A. M. et al. Competitive Electrochemical Apta-Assay Based on cDNA-Ferrocene and MXenes for Staphylococcus aureus Surface Protein A Detection. Biosensors (Basel) 14, doi:10.3390/bios14120636 (2024).

43Wang, M. et al. Dual-ratiometric fluorescent aptasensor based on gold nanoclusters and dual-amplification strategy for simultaneous detection of ochratoxin A and aflatoxin B1. Sensors and Actuators B: Chemical 427, 137164, doi:https://doi.org/10.1016/j.snb.2024.137164 (2025).

44Wang, R. et al. Colorimetric and photothermal dual-mode aptasensor for ultrasensitive detection of tobramycin based on Mn-CeO2 nanozyme with one-pot hydrothermal method. Sensors and Actuators B: Chemical, 137178, doi:https://doi.org/10.1016/j.snb.2024.137178 (2024).

45Wu, M. et al. Design of a pseudo-color-assisted biocompatible supramolecular sensing probe for "lighting up" endogenous salicylic acid in plants. Biosens Bioelectron 271, 117088, doi:10.1016/j.bios.2024.117088 (2024).

46Wu, X. et al. Nanogel imprinting improving affinity and selectivity of domain-limited ssDNA aptamer to Pb(2+): Interaction mechanisms revealed by molecular dynamics simulation. Int J Biol Macromol 290, 138997, doi:10.1016/j.ijbiomac.2024.138997 (2024).

47Xu, X. et al. A multicolor sensing system for rapid detection of Staphylococcus aureus and Escherichia coli O157:H7 based on the nanozyme activity of MIL(53)-Fe and etching of gold nanorods. Food Bioscience, 105765, doi:https://doi.org/10.1016/j.fbio.2024.105765 (2024).

48Yang, H. et al. Near-infrared light-driven photoelectrochemical aptasensor based on direct Z-scheme poly(pyrrole-co-thiophene)/ZnIn2S4 heterostructure for sensitive detection of di(2-ethylhexyl)phthalate. Sensors and Actuators B: Chemical, 137183, doi:https://doi.org/10.1016/j.snb.2024.137183 (2024).

49Yang, Y., Chen, Z., Pan, Y., Zhang, Y. & Le, T. Interactions of metal-based nanozymes with aptamers, from the design of nanozyme to its application in aptasensor: Advances and perspectives. Talanta 286, 127450, doi:10.1016/j.talanta.2024.127450 (2024).

50Yang, Y. et al. Framework Nucleic Acid-Nanobody Fusion Probe-Based Pharmacokinetics Modulation and Analysis for Efficient Positron Emission Tomography Imaging. ACS Nano, doi:10.1021/acsnano.4c09127 (2024).

51Yang, Z. et al. An aptamer sensor based on AgNPs@MOF for surface-enhanced Raman spectroscopy detection of sulfadimethoxine in food. Mikrochim Acta 192, 29, doi:10.1007/s00604-024-06897-x (2024).

52Ye, Z. et al. Antibiotic residue detection by novel photoelectrochemical extended-gate field-effect transistor sensor. J Hazard Mater 485, 136897, doi:10.1016/j.jhazmat.2024.136897 (2024).

53Yousefniayejahr, Z. et al. Label-free impedance-based aptasensor for Escherichia coli detection in real matrices. Microchemical Journal, 112595, doi:https://doi.org/10.1016/j.microc.2024.112595 (2024).

54Zhang, J. et al. Highly conductive MXene-Au NPs and high current AuPd NPs/UiO-66 electrochemical sensor combining multiple signal amplification strategies for tetracycline detection. Chemical Engineering Journal, 158980, doi:https://doi.org/10.1016/j.cej.2024.158980 (2024).

55Zhao, L. et al. Dual-mode exosome detection leveraging a nanozyme-active artificial receptor: PDA@Fe@Zn-based nucleic acid aptamer sensor. Talanta 285, 127380, doi:10.1016/j.talanta.2024.127380 (2024).

56Zhou, Y. et al. A novel triangular nanocolumn array substrate integrated microfluidic chip for prostate cancer CTCs capture and SERS detection. Microchemical Journal, 112613, doi:https://doi.org/10.1016/j.microc.2024.112613 (2024).

57Zhu, A. et al. Trace Detection of S. aureus Cells in Food Samples via RCA-assisted SERS Signal Amplification with Core-Shell Nanoprobe. Talanta, 127458, doi:https://doi.org/10.1016/j.talanta.2024.127458 (2024).


END

Aptamy   10年专注核酸适配体筛选!

提供适配体筛选、亲和力检测等技术服务,合作咨询:

微信号丨aptamerHF

电话丨13965674386

官网丨www.aptamy.com

2025-01-10 16:07
浏览量:0
收藏