适配体领域研究进展——2024年12月第四周

点击蓝字 关注我们


研究进展


20241223-20241229 适配体领域一周研究进展
本周有不少亮点工作。针对检测工作,有针对小分子(毒素、抗生素、药物等)、疾病标志物、病原菌、外泌体以及细胞相关的检测工作。筛选相关工作有4篇,算是比较多的了,包括一篇筛选出构象特异性的适配体(文献31),说明适配体在一定条件下,可以具备非常好的特异性。其它研究包括结构研究、调控应用,以及用作递送平台等。如果你对哪些工作感兴趣,可以在评论区留言告诉我们。
生物传感与检测
适配体技术与机制研究
药物递送与疾病治疗
参考文献
1Akolgo, G. A., Asiedu, K. B. & Amewu, R. K. Exploring Mycolactone-The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins (Basel) 16, doi:10.3390/toxins16120528 (2024).
2Amini-Nogorani, E., Zare, H. R., Jahangiri-Dehaghani, F. & Benvidi, A. Quantification of ochratoxin A in a coffee sample utilizing an electrochemical aptasensor fabricated through encapsulation of toluidine blue within a Zn-based metal-organic framework. Mikrochim Acta 192, 27, doi:10.1007/s00604-024-06863-7 (2024).
3Chen, J., Ma, P., Xu, J., Zang, M. & Li, W. Glycosylation-Targeting Aptamer for the Feasible Construction of a Dual Aptamer-Based Plasmonic Immunosandwich Assay in Cancer Diagnostics. Anal Chem, doi:10.1021/acs.analchem.4c03770 (2024).
4Dai, H. et al. A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus. Analytica Chimica Acta 1338, 343589, doi:https://doi.org/10.1016/j.aca.2024.343589 (2025).
5Du, L. et al. Preadsorbed Particles with Cross-Shaped DNA Scaffolds Enable Spherical Nucleic Acid to Directly Respond to Protein in Complex Matrices. Anal Chem, doi:10.1021/acs.analchem.4c05096 (2024).
6Fan, J. et al. Nanocarrier-Mediated RNA Delivery Platform as a Frontier Strategy for Hepatic Disease Treatment: Challenges and Opportunities. Adv Healthc Mater, e2402933, doi:10.1002/adhm.202402933 (2024).
7Fasogbon, I. V. et al. Recent Focus in Non-Selex-Computational Approach for De Novo Aptamer Design: A Mini Review. Anal Biochem, 115756, doi:10.1016/j.ab.2024.115756 (2024).
8Foroozandeh, A. et al. Recent advancements in nanobiosensors for diagnosis of ovarian cancer: Analytical approaches. TrAC Trends in Analytical Chemistry, 118119, doi:https://doi.org/10.1016/j.trac.2024.118119 (2024).
9Gan, Z. et al. Characterization of Streptococcus agalactiae Strain TP540K and Its Potential as a Target for DNA Aptamer Development in the Preliminary Stage of Whole-Cell Based SELEX. Journal of Environmental Microbiology and Toxicology 12, 31-37, doi:10.54987/jemat.v12i2.1010 (2024).
10Guan, F. et al. An electrochemical aptamer sensor based on AuNPs/ErGO/Cu-MOF nanocomposites for the detection of oxytetracycline in foodstuff. Microchemical Journal 208, 112579, doi:https://doi.org/10.1016/j.microc.2024.112579 (2025).
11Guo, Z. et al. Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching. Mikrochim Acta 192, 33, doi:10.1007/s00604-024-06883-3 (2024).
12Hiu, J. J., Tan, H. S. & Yap, M. K. K. The neutralisation and inhibitory effects of new tRNA-mimetic aptamer against cytotoxin-induced cytotoxicity in human skin keratinocytes. Biochimie, doi:https://doi.org/10.1016/j.biochi.2024.12.011 (2024).
13Hu, Z. et al. Switch-Type Electrochemiluminescence Aptasensor for AFB1 Detection Based on CoS Quantum Dots Encapsulated in Co-LDH and a Ferrocene Quencher. Anal Chem, doi:10.1021/acs.analchem.4c05821 (2024).
14Huang, W., Liu, F., Geng, L., Zhao, S. & Ye, F. Photoelectrochemical biosensing platform based on switch of photocurrent polarity of CdS/Ni-CAT nanorod arrays by Au@Cu2O for highly selective and sensitive CEA detection. Talanta 286, 127489, doi:https://doi.org/10.1016/j.talanta.2024.127489 (2025).
15Jia, B. et al. An aptasensor consisting of the integrated MOF-derived Zn-MOF-on- Co-MOF coupled with AuNPs nanocomposites and aptamer for ultrasensitive assay of fipronil. Food Chemistry, 142662, doi:https://doi.org/10.1016/j.foodchem.2024.142662 (2024).
16Jia, H. et al. Integrated SERS-Microfluidic Sensor Based on Nano-Micro Hierarchical Cactus-like Array Substrates for the Early Diagnosis of Prostate Cancer. Biosensors (Basel) 14, doi:10.3390/bios14120579 (2024).
17Jin, X. Y., Chen, L. Y., Liu, Y. N., Xie, W. J. & Peng, H. Y. [Construction of a 17beta-estradiol sensor based on a magnetic graphene oxide/aptamer separating material]. Se Pu 43, 87-95, doi:10.3724/SP.J.1123.2024.06009 (2025).
18Kavruk, M. & Ozalp, V. C. Paper-Based Aptasensor Assay for Detection of Food Adulterant Sildenafil. Biosensors (Basel) 14, doi:10.3390/bios14120620 (2024).
19Kim, K. B., Kim, S. H. & Yoo, S. M. Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems. Biosensors (Basel) 14, doi:10.3390/bios14120625 (2024).
20Li, D., Chen, Q., Li, Y., Yuan, R. & Xiang, Y. Programming Catalytic Nucleic Acid Amplification Cascade for Highly Sensitive Electrochemical Aptamer-based Angiopoietin Like Protein 4 Biosensor. Sensors and Actuators B: Chemical, 137207, doi:https://doi.org/10.1016/j.snb.2024.137207 (2024).
21Li, G. et al. Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection. Mikrochim Acta 192, 35, doi:10.1007/s00604-024-06909-w (2024).
22Li, H., Cai, Q., Bai, M. & Jie, G. Novel Dual-Potential Color-Resolved Luminophore Ru(bpy)(3)(2+)-Doped CdSe QDs for Bipolar Electrode Electrochemiluminescence Biosensing. Anal Chem, doi:10.1021/acs.analchem.4c05678 (2024).
23Li, M. et al. A label-free photoelectrochemical aptasensor utilizing Ag2S quantum dot-sensitized In2O3/BiOBr heterojunction for β-lactoglobulin detection in milk samples. Microchemical Journal 208, 112564, doi:https://doi.org/10.1016/j.microc.2024.112564 (2025).
24Ling, C. C. Y. & Fullwood, M. J. AptaFluorescence: An aptamer-based fluorescent imaging protocol for biomolecule visualization. PLoS One 19, e0316359, doi:10.1371/journal.pone.0316359 (2024).
25Liu, H. et al. Ligation-Recognition Triggered RPA-Cas12a cis-cleavage Fluorogenic RNA Aptamer for One-pot and Label-free Detection of MicroRNA in Breast Cancer. Biosensors and Bioelectronics, 117106, doi:https://doi.org/10.1016/j.bios.2024.117106 (2024).
26Liu, J., Tan, F., Cao, T., Yu, R. & Wang, Y. Tunable aptamer-MXene sensing interface for label-free and real-time detection of toxic pollutants in water samples. Biosens Bioelectron 271, 117096, doi:10.1016/j.bios.2024.117096 (2024).
27Liu, Y. & Xu, X. An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I. Mikrochim Acta 192, 25, doi:10.1007/s00604-024-06882-4 (2024).
28Lv, Y. et al. In situ formation of boronic acid-based covalent organic frameworks for specific and ultra-sensitive electrochemical assay of glycosylated amyloid-beta proteins. Talanta 285, 127435, doi:10.1016/j.talanta.2024.127435 (2024).
29Ma, X., Hui, M., Yuan, J., Wang, Z. & Ma, X. Construction of colorimetric-fluorescent dual-signal aptamer-based assay using COF-Au nanozyme and magnetic nanoparticle-based CdTe quantum dots for sensitive zearalenone determination. Mikrochim Acta 192, 38, doi:10.1007/s00604-024-06914-z (2024).
30Ma, Y., Liu, H., Wang, X., Sun, S. & Guo, H. [Research progress in polysaccharide-modified lipid nanoparticles for drug delivery]. Sheng Wu Gong Cheng Xue Bao 40, 4339-4350, doi:10.13345/j.cjb.240188 (2024).
31Machha, V. R. et al. Conformation-specific RNA aptamers for phenotypic distinction between normal von Willebrand factor and type 2B von Willebrand disease. NAR Mol Med 1, ugae021, doi:10.1093/narmme/ugae021 (2024).
32Ming, Y. et al. Low background catalytic redox recycling coupled with hybridization chain reaction amplification for highly sensitive electrochemical aptamer luteinizing hormone assay. Bioelectrochemistry 163, 108888, doi:https://doi.org/10.1016/j.bioelechem.2024.108888 (2025).
33Navien, T. N., Thevendran, R. & Citartan, M. In Silico Selection against Progesterone Receptor DNA-Binding Domain and other members of steroid hormone receptors. Anal Biochem, 115752, doi:10.1016/j.ab.2024.115752 (2024).
34Ning, G. et al. Discrimination of normal/cancer cells in bioimaging through a rolling circle amplification-enhanced red carbon dots-embedded multivalent aptamers nanoplatform. Talanta 285, 127436, doi:10.1016/j.talanta.2024.127436 (2024).
35Qin, M. et al. Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils. Biosens Bioelectron 271, 117100, doi:10.1016/j.bios.2024.117100 (2024).
36Ren, Y. et al. A general strategy for engineering GU base pairs to facilitate RNA crystallization. Nucleic Acids Res, doi:10.1093/nar/gkae1218 (2024).
37Renzl, C. & Mayer, G. Optoribogenetic Modulation of Transcription. Methods Mol Biol 2840, 37-44, doi:10.1007/978-1-0716-4047-0_3 (2025).
38Rolli, J. et al. DNA aptamers that modulate biological activity of model neurons. Mol Ther Nucleic Acids 35, 102392, doi:10.1016/j.omtn.2024.102392 (2024).
39Serebrennikova, K. V., Komova, N. S., Zherdev, A. V. & Dzantiev, B. B. SERS Sensors with Bio-Derived Substrates Under the Way to Agricultural Monitoring of Pesticide Residues. Biosensors (Basel) 14, doi:10.3390/bios14120573 (2024).
40Sun, X. et al. A dual-functional monomer-based molecularly imprinted fluorescent aptasensor employing near-infrared carbon dots for selective detection of quinine in food. Food Chem 469, 142317, doi:10.1016/j.foodchem.2024.142317 (2024).
41Tang, Y. et al. Signal-on lateral flow immunoassays for rapid detection of tetrodotoxin in pufferfish. J Hazard Mater 486, 136973, doi:10.1016/j.jhazmat.2024.136973 (2024).
42Tataru, A. M. et al. Competitive Electrochemical Apta-Assay Based on cDNA-Ferrocene and MXenes for Staphylococcus aureus Surface Protein A Detection. Biosensors (Basel) 14, doi:10.3390/bios14120636 (2024).
43Wang, M. et al. Dual-ratiometric fluorescent aptasensor based on gold nanoclusters and dual-amplification strategy for simultaneous detection of ochratoxin A and aflatoxin B1. Sensors and Actuators B: Chemical 427, 137164, doi:https://doi.org/10.1016/j.snb.2024.137164 (2025).
44Wang, R. et al. Colorimetric and photothermal dual-mode aptasensor for ultrasensitive detection of tobramycin based on Mn-CeO2 nanozyme with one-pot hydrothermal method. Sensors and Actuators B: Chemical, 137178, doi:https://doi.org/10.1016/j.snb.2024.137178 (2024).
45Wu, M. et al. Design of a pseudo-color-assisted biocompatible supramolecular sensing probe for "lighting up" endogenous salicylic acid in plants. Biosens Bioelectron 271, 117088, doi:10.1016/j.bios.2024.117088 (2024).
46Wu, X. et al. Nanogel imprinting improving affinity and selectivity of domain-limited ssDNA aptamer to Pb(2+): Interaction mechanisms revealed by molecular dynamics simulation. Int J Biol Macromol 290, 138997, doi:10.1016/j.ijbiomac.2024.138997 (2024).
47Xu, X. et al. A multicolor sensing system for rapid detection of Staphylococcus aureus and Escherichia coli O157:H7 based on the nanozyme activity of MIL(53)-Fe and etching of gold nanorods. Food Bioscience, 105765, doi:https://doi.org/10.1016/j.fbio.2024.105765 (2024).
48Yang, H. et al. Near-infrared light-driven photoelectrochemical aptasensor based on direct Z-scheme poly(pyrrole-co-thiophene)/ZnIn2S4 heterostructure for sensitive detection of di(2-ethylhexyl)phthalate. Sensors and Actuators B: Chemical, 137183, doi:https://doi.org/10.1016/j.snb.2024.137183 (2024).
49Yang, Y., Chen, Z., Pan, Y., Zhang, Y. & Le, T. Interactions of metal-based nanozymes with aptamers, from the design of nanozyme to its application in aptasensor: Advances and perspectives. Talanta 286, 127450, doi:10.1016/j.talanta.2024.127450 (2024).
50Yang, Y. et al. Framework Nucleic Acid-Nanobody Fusion Probe-Based Pharmacokinetics Modulation and Analysis for Efficient Positron Emission Tomography Imaging. ACS Nano, doi:10.1021/acsnano.4c09127 (2024).
51Yang, Z. et al. An aptamer sensor based on AgNPs@MOF for surface-enhanced Raman spectroscopy detection of sulfadimethoxine in food. Mikrochim Acta 192, 29, doi:10.1007/s00604-024-06897-x (2024).
52Ye, Z. et al. Antibiotic residue detection by novel photoelectrochemical extended-gate field-effect transistor sensor. J Hazard Mater 485, 136897, doi:10.1016/j.jhazmat.2024.136897 (2024).
53Yousefniayejahr, Z. et al. Label-free impedance-based aptasensor for Escherichia coli detection in real matrices. Microchemical Journal, 112595, doi:https://doi.org/10.1016/j.microc.2024.112595 (2024).
54Zhang, J. et al. Highly conductive MXene-Au NPs and high current AuPd NPs/UiO-66 electrochemical sensor combining multiple signal amplification strategies for tetracycline detection. Chemical Engineering Journal, 158980, doi:https://doi.org/10.1016/j.cej.2024.158980 (2024).
55Zhao, L. et al. Dual-mode exosome detection leveraging a nanozyme-active artificial receptor: PDA@Fe@Zn-based nucleic acid aptamer sensor. Talanta 285, 127380, doi:10.1016/j.talanta.2024.127380 (2024).
56Zhou, Y. et al. A novel triangular nanocolumn array substrate integrated microfluidic chip for prostate cancer CTCs capture and SERS detection. Microchemical Journal, 112613, doi:https://doi.org/10.1016/j.microc.2024.112613 (2024).
57Zhu, A. et al. Trace Detection of S. aureus Cells in Food Samples via RCA-assisted SERS Signal Amplification with Core-Shell Nanoprobe. Talanta, 127458, doi:https://doi.org/10.1016/j.talanta.2024.127458 (2024).

END

Aptamy 10年专注核酸适配体筛选!
提供适配体筛选、亲和力检测等技术服务,合作咨询:

微信号丨aptamerHF
电话丨13965674386
官网丨www.aptamy.com