Aptamer!2025年第一期!适配体领域一周研究进展

点击蓝字 关注我们


研究进展


20241230-20250105 适配体领域一周研究进展。后台回复文献编号,我们将优先解读相关文献。
说到适配体,这里领域有几个明星靶标,对蛋白质来说,是凝血酶,对小分子来说黄曲霉毒素 B1绝对是个王者。本周就有4篇与黄曲霉毒素 B1相关的论文,而与筛选相关的仅2篇。这凸显了一个不争的事实,这个世间依然缺乏大量优质的适配体可用,所以,很多研究只能基于少数几个被广泛验证的aptamer来开展。SELEX技术建立35年了,筛选依然困扰着很多实验室。其实,一个领域的发展依靠分工协作,只有当大家各自发挥自己长处,分工协作,才是最高效的工作方式。欢迎有筛选需求的伙伴联系我们。
另外,我们也要看到,适配体在药物递送,疾病治疗等方向也有很多应用,这是一项利好。毕竟,只有当适配体有广泛的应用前景,这项研究才值得我们不懈努力。
生物传感与检测
适配体的其它应用
药物递送与疾病治疗
适配体筛选技术及机制研究
综述及其它
参考文献
1 Anantha, P., Raj, P., Zheng, P., Tanwar, S. & Barman, I. Gold Nanoprism Enhanced SERS Aptasensor for Simultaneous Detection of Thrombin and VEGF. Sens Actuators B Chem 423, doi:10.1016/j.snb.2024.136811 (2025).
2 Cao, L. et al. Aptamer-based DNAzyme walker electrochemical biosensing strategy for Acinetobacter baumannii detection. Bioelectrochemistry 163, 108895, doi:10.1016/j.bioelechem.2024.108895 (2024).
3 Caruso, M. R. et al. Halloysite clay nanotubes as platforms for loading of aptamers and antisense oligonucleotides. Hybrid Advances 8, 100374, doi:https://doi.org/10.1016/j.hybadv.2024.100374 (2025).
4 Chen, L. et al. Mitochondria-Targeted DNA-Based Nanoprobe for In Situ Monitoring of the Activity of the mtDNA Repair Enzyme and Evaluating Tumor Radiosensitivity. Anal Chem, doi:10.1021/acs.analchem.4c04408 (2025).
5 Dai, H. et al. Insights and therapeutic advances in pancreatic cancer: the role of electron microscopy in decoding the tumor microenvironment. Front Cell Dev Biol 12, 1460544, doi:10.3389/fcell.2024.1460544 (2024).
6 Dong, J. & Willner, I. Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis. J Am Chem Soc, doi:10.1021/jacs.4c16829 (2024).
7 Feng, H., Gao, H., Chen, J., Zhao, R. & Huang, Y. Emerging phospholipid-targeted affinity materials for extracellular vesicle isolation and molecular profiling. J Chromatogr A 1741, 465639, doi:10.1016/j.chroma.2024.465639 (2024).
8 Fu, X. et al. Development of dual aptamers-functionalized c-MET PROTAC degraders for targeted therapy of osteosarcoma. Theranostics 15, 103-121, doi:10.7150/thno.99588 (2025).
9 Heili, J., Adamala, K. & Engelhart, A. Activation of caged functional RNAs by an oxidative transformation. Chembiochem, e202401056, doi:10.1002/cbic.202401056 (2024).
10 Huang, W., Liu, F., Geng, L., Zhao, S. & Ye, F. Photoelectrochemical biosensing platform based on switch of photocurrent polarity of CdS/Ni-CAT nanorod arrays by Au@Cu(2)O for highly selective and sensitive CEA detection. Talanta 286, 127489, doi:10.1016/j.talanta.2024.127489 (2024).
11 Jahangiri, A. et al. Highly sensitive detection of Staphylococcus aureus alpha-hemolysin protein (Hla or alpha-toxin) by apta-qPCR. J Microbiol Methods 229, 107084, doi:10.1016/j.mimet.2024.107084 (2024).
12 Jiang, X., Lv, Z., Rao, C. & Chen, X. A signal “off–on” electrochemical aptamer sensor of Staphylococcus aureus based on ZIF8-derived carbon decorated with platinum nanoparticles. Microchemical Journal, 112627, doi:https://doi.org/10.1016/j.microc.2024.112627 (2024).
13 Jin, F. et al. Engineered Cell Membrane Vesicles Loaded with Lysosomophilic Drug for Acute Myeloid Leukemia Therapy via Organ-Cell-Organelle Cascade-Targeting. Biomaterials, 123091, doi:https://doi.org/10.1016/j.biomaterials.2025.123091 (2025).
14 Khattiya, A., Karaket, R., Mathaweesansurn, A. & Detsri, E. Ultrasensitive electrochemical aptasensors based on trimetallic AuPt-Ru nanoparticles decorated RGO with disposable and low-cost goldleaf electrode for aflatoxin B1 quantification in agricultural products. Microchemical Journal 208, 112631, doi:https://doi.org/10.1016/j.microc.2024.112631 (2025).
15 Kim, Y. M. et al. Multifunctional DNA-Metal Nanohybrids Derived From DNA-MgPPi Microhybrids by Rolling Circle Amplification. Small Methods, e2401881, doi:10.1002/smtd.202401881 (2025).
16 Ku, M. et al. Degradation of AFB(1) in edible oil by aptamer-modified TiO(2) composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity. Food Chem 470, 142674, doi:10.1016/j.foodchem.2024.142674 (2024).
17 Le, A. T. H., Teclemichael, E., Krylova, S. M. & Krylov, S. N. Quantitative Characterization of Partitioning Stringency in SELEX. JACS Au 4, 4910-4920, doi:10.1021/jacsau.4c00890 (2024).
18 Li, J., Zhao, S., Bai, L., Liu, X. & Shang, L. Ratiometric fluorescence aptasensor for lysozyme based on the controllable excimer formation of perylene probe. Talanta 286, 127521, doi:https://doi.org/10.1016/j.talanta.2025.127521 (2025).
19 Li, Y., Qian, M., Cheng, Y. & Qiu, X. Robust visualization of membrane protein by aptamer mediated proximity ligation assay and Förster resonance energy transfer. Colloids and Surfaces B: Biointerfaces 248, 114486, doi:https://doi.org/10.1016/j.colsurfb.2024.114486 (2025).
20 Lim, S., Tan, M. & Tan, E. Development of an Aptamer-Based Electrochemical Biosensor for Early Detection of Prostate Cancer Markers. Journal of Biomedical and Techno Nanomaterials 1, 196-126, doi:10.70177/jbtn.v1i4.1811 (2024).
21 Liu, H. et al. Ligation-recognition triggered RPA-Cas12a cis-cleavage fluorogenic RNA aptamer for one-pot and label-free detection of MicroRNA in breast cancer. Biosens Bioelectron 272, 117106, doi:10.1016/j.bios.2024.117106 (2024).
22 Luo, S., Notaro, A. & Lin, L. ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs. Nat Commun 16, 216, doi:10.1038/s41467-024-54675-3 (2025).
23 Ma, X., Hui, M., Yuan, J., Wang, Z. & Ma, X. Construction of colorimetric-fluorescent dual-signal aptamer-based assay using COF-Au nanozyme and magnetic nanoparticle–based CdTe quantum dots for sensitive zearalenone determination. Microchimica Acta 192, 38, doi:10.1007/s00604-024-06914-z (2024).
24 Ming, Y. et al. Low background catalytic redox recycling coupled with hybridization chain reaction amplification for highly sensitive electrochemical aptamer luteinizing hormone assay. Bioelectrochemistry 163, 108888, doi:10.1016/j.bioelechem.2024.108888 (2024).
25 Nguyen, J. V. L. et al. Combinatorial Nanoparticle-Bound ssDNA Oligonucleotide Library Synthesized by Split-and-Pool Synthesis. ACS Applied Bio Materials, doi:10.1021/acsabm.4c01681 (2024).
26 Nirala, N. R., Sadhasivam, S., Singh, R. K., Sionov, E. & Shtenberg, G. Sensitive ratiometric detection of Fumonisin B1 using a reusable Ag-pSi SERS platform. Food Chemistry: X 25, 102151, doi:https://doi.org/10.1016/j.fochx.2024.102151 (2025).
27 Niu, M. et al. A zwitterionic phosphorylcholine-based antifouling electrochemical aptasensor for aflatoxin B1 detection in food. Journal of Food Composition and Analysis, 107178, doi:https://doi.org/10.1016/j.jfca.2024.107178 (2024).
28 Nourry, J. et al. Whole-Cell Aptamer-Based Techniques for Rapid Bacterial Detection: Alternatives to Traditional Methods. Journal of Pharmaceutical and Biomedical Analysis, 116661, doi:https://doi.org/10.1016/j.jpba.2025.116661 (2025).
29 Pakkiyam, S., Marimuthu, M., Kumar, J., Ganesh, V. & Veerapandian, M. Microbial crosstalk with dermal immune system: A review on emerging analytical methods for macromolecular detection and therapeutics. Int J Biol Macromol, 139369, doi:10.1016/j.ijbiomac.2024.139369 (2024).
30 Phetsang, S., Anuthum, S., Boonkerd, M., Jakmunee, J. & Ounnunkad, K. Electrochemical detection of albumin on a 2D MoS2/WS2-based immunosensor toward Sandwich-Like formation and [Ru(NH3)6]3+/DNA aptamer signal Amplification. Microchemical Journal 209, 112639, doi:https://doi.org/10.1016/j.microc.2024.112639 (2025).
31 Philippi, S. M. et al. Basic Science and Pathogenesis. Alzheimers Dement 20 Suppl 1, e092692, doi:10.1002/alz.092692 (2024).
32 Saju, A. F., Mukundan, A., Divyashree, M., Chandrashekhar, R. & Mahadev Rao, A. RNA diagnostics and therapeutics: a comprehensive review. RNA Biol 22, 1-11, doi:10.1080/15476286.2024.2449277 (2025).
33 Shafaghi, A. et al. Recent progress in two-response signaling aptasensors: Efficient detection tools for various targets. Microchemical Journal 209, 112643, doi:https://doi.org/10.1016/j.microc.2024.112643 (2025).
34 Shao, S. et al. Reconfigurable Amphiphilic DNA Nanotweezer for Targeted Delivery of Therapeutic Oligonucleotides. ACS Cent Sci 10, 2338-2345, doi:10.1021/acscentsci.4c01152 (2024).
35 Sharma, P. et al. Development and assessment of a novel magnetic nanoparticle antibody-conjugate and aptamer-based assay (MNp-Ab-Ap assay) for the rapid diagnosis of pleural tuberculosis. Nanotheranostics 9, 20-30, doi:10.7150/ntno.95332 (2025).
36 Shi, L. et al. Advances in Functional Nucleic Acid SERS Sensing Strategies. ACS Sens, doi:10.1021/acssensors.4c02611 (2025).
37 Vairaperumal, T. & Liu, P. Y. Aptasensor-based point-of-care detection of cardiac troponin biomarkers for diagnosis of acute myocardial infarction. Kaohsiung J Med Sci, e12932, doi:10.1002/kjm2.12932 (2025).
38 Wang, H. et al. An aptamer-based MoS2 field-effect transistor biosensor with high sensitivity for cytokine detection. Materials Today Nano 29, 100565, doi:https://doi.org/10.1016/j.mtnano.2024.100565 (2025).
39 Wang, J. et al. Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer. J Am Chem Soc, doi:10.1021/jacs.4c13768 (2025).
40 Wang, J. et al. Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au. Mikrochim Acta 192, 52, doi:10.1007/s00604-024-06917-w (2025).
41 Wang, L. et al. G-Quadruplex DNAzyme-Based Biocatalysis Combined with an Intelligent Electromagnetic-Actuated Microfluidic Chip for Tetracycline Detection. Journal of Agricultural and Food Chemistry, doi:10.1021/acs.jafc.4c09976 (2024).
42 Wang, Q. et al. Cerium-based metal-organic framework as a target-responsive release system in an electrochemical aptasensor with Mg2+-driven DNAzyme signal switch for ultrasensitive detection of ofloxacin. Sensors and Actuators B: Chemical 427, 137186, doi:https://doi.org/10.1016/j.snb.2024.137186 (2025).
43 Wang, Q. et al. High-affinity ssDNA aptamer and chemiluminescent aptasensor for TIMP-1 detection in human serum. Anal Sci, doi:10.1007/s44211-024-00673-w (2025).
44 Wu, M. et al. Multi-functional electrochemiluminescence biosensor for efficient capture, elimination, and sensitive monitoring of Staphylococcus aureus. Biosens Bioelectron 272, 117112, doi:10.1016/j.bios.2024.117112 (2024).
45 Wu, Y. et al. Genetically Encoded Fluorogenic DNA Aptamers for Imaging Metabolite in Living Cells. J Am Chem Soc, doi:10.1021/jacs.4c09855 (2024).
46 Xu, Z. H. et al. Highly sensitive aggregation-induced electrochemiluminescence sensor for cadmium detection in Ganoderma lucidum. Food Chem 470, 142661, doi:10.1016/j.foodchem.2024.142661 (2024).
47 Yamada, T. et al. Development of a Mertansine-Specific DNA Aptamer and Novel High-Throughput Sandwich Enzyme-Linked Oligonucleotide Assay for Quantification and Characterization of Trastuzumab Emtansine. Biosensors and Bioelectronics, 117108, doi:https://doi.org/10.1016/j.bios.2024.117108 (2024).
48 Yuan, Q. et al. Orthogonal and multiplexable genetic perturbations with an engineered prime editor and a diverse RNA array. Nat Commun 15, 10868, doi:10.1038/s41467-024-55134-9 (2024).
49 Zafar, F., Saif, K., Andreescu, D., Andreescu, S. & Hayat, A. A Target Responsive Metal Organic Framework Derived Bimetallic Apta-Switch for Reagentless Molecular Recognition. Langmuir, doi:10.1021/acs.langmuir.4c03752 (2025).
50 Zhang, W. et al. From signal-off to signal-on: polyT linker alters signal response mode and enhances signal change of aptamer beacon probe. Anal Bioanal Chem, doi:10.1007/s00216-024-05704-z (2025).
51 Zhang, Y. et al. A competitive aptamer binding-based CRISPR-cas biosensor for sensitive detection of tetracycline residues in biological samples. Talanta 286, 127491, doi:10.1016/j.talanta.2024.127491 (2024).
52 Zhang, Y., Sun, Y., Liao, H. & Shi, S. Multifunctional DNA nanomaterials: a new frontier in rheumatoid arthritis diagnosis and treatment. Nanoscale, doi:10.1039/d4nr04013a (2025).

END

Aptamy 10年专注核酸适配体筛选!
提供适配体筛选、亲和力检测等技术服务,合作咨询:

微信号丨aptamerHF
电话丨13965674386
官网丨www.aptamy.com